Skip to main content

Working with datasets in ClearML

Last update:
For your information

In the instructions, we look at examples of working with datasets in ClearML using the example of an image dataset CIDFAR10.

To work with datasets in ClearML is used Dataset class. In ClearML WebApp, the dataset is displayed as an Experiment with the Data Processing type.

Before you start working with datasets, you should prepare the environment.

Prepare the environment

  1. Set conda package management system.

  2. Create an environment for conda:

    conda env create --file environment.yml
    File environment.yml
    name: clearml_datasets
    channels:
    - defaults
    dependencies:
    - ca-certificates=2022.4.26
    - certifi=2022.5.18.1
    - libffi=3.3
    - ncurses=6.3
    - openssl=1.1.1o
    - pip=21.2.4
    - python=3.8.13
    - readline=8.1.2
    - setuptools=61.2.0
    - sqlite=3.38.3
    - tk=8.6.12
    - wheel=0.37.1
    - xz=5.2.5
    - zlib=1.2.12
    - pip:
    - attrs==21.4.0
    - boto3==1.24.22
    - botocore==1.27.22
    - charset-normalizer==2.0.12
    - clearml==1.5.0
    - furl==2.1.3
    - future==0.18.2
    - idna==3.3
    - importlib-resources==5.8.0
    - jsonschema==4.6.0
    - numpy==1.22.4
    - orderedmultidict==1.0.1
    - pathlib2==2.3.7.post1
    - pillow==9.1.1
    - psutil==5.9.1
    - pyjwt==2.4.0
    - pyparsing==3.0.9
    - pyrsistent==0.18.1
    - python-dateutil==2.8.2
    - pyyaml==6.0
    - python-mnist==0.7
    - requests==2.28.0
    - tqdm==4.64.0
    - six==1.16.0
    - urllib3==1.26.9
    - zipp==3.8.0
  3. Activate the environment:

    conda activate clearml_datasets
  4. Check the connection of the ClearML SDK to the ClearML Server:

    clearml-init
  5. Make sure in the configuration file clearml.conf the correct ClearML Server URL of the form http://yourdomain.cmlp.selectel.ru. Read more in ClearML documentation.

  6. Check that the clearml.conf configuration file describes the connection to the storage. We recommend connect ClearML to Selectel object storage.

Prepare data

Before using the examples, load the dataset CIDFAR10 and get it ready to go.

Example of a script for data preparation
import os
import numpy as np
import tqdm
import shutil
import requests
from typing import Dict, Tuple, List, Text
from PIL import Image

from source.auxiliary_code.global_config import get_temp_data_path

def unpickle(file: Text) -> Dict:
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict

def prepare_temp_folder(dataset_name: Text) -> Text:
temp_folder_path = get_temp_data_path()

if not os.path.exists(temp_folder_path):
os.mkdir(temp_folder_path)

if not os.path.exists(os.path.join(temp_folder_path, dataset_name)):
os.mkdir(os.path.join(temp_folder_path, dataset_name))

return temp_folder_path


def get_data_archive(temp_folder: Text) -> Text:
archive_name = "cifar-10-python.tar.gz"
archive_url = "https://www.cs.toronto.edu/~kriz/{}".format(archive_name)

archive_path = os.path.join(temp_folder, archive_name)

print("Downloading data archive from {}".format(archive_url))

if not os.path.exists(archive_path):
r = requests.get(archive_url)

open(os.path.join(temp_folder, archive_name), 'wb').write(r.content)

return archive_path


def unzip_data(archive_path: Text) -> Text:
data_folder = archive_path.split("/")[-1].split(".")[0]

extract_dir = "{}/{}".format("/".join(archive_path.split("/")[:-1]), data_folder)

print("Extracting data archive to {}".format(extract_dir))

shutil.unpack_archive(archive_path, extract_dir)

return extract_dir


def transform_images(batches: List[Text]) -> List[Dict]:
images = []

for batch_path in batches:
batch = unpickle(batch_path)

for i in tqdm.tqdm(range(len(batch[b'data']))):
images.append({
"image": Image.fromarray(np.reshape(batch[b'data'][i], (32, 32, 3), order='F')),
"label": str(batch[b'labels'][i]),
"file_name": batch[b'filenames'][i].decode('utf-8')
})

return images


def save_images(images: List[Dict], folder: Text) -> List[Text]:
image_paths = []
for i in tqdm.tqdm(range(len(images))):
if not os.path.exists(os.path.join(folder, images[i]["label"])):
os.mkdir(os.path.join(folder, images[i]["label"]))

images[i]["image"].save(os.path.join(folder, images[i]["label"], images[i]["file_name"]))
image_paths.append(os.path.join(folder, images[i]["label"], images[i]["file_name"]))

return image_paths


def extract(dataset_name: Text) -> Text:
temp_folder_path = prepare_temp_folder(dataset_name)

archive_path = get_data_archive(os.path.join(temp_folder_path, dataset_name))

data_path = unzip_data(archive_path)

return data_path


def transform(data_path: Text) -> Tuple[List, List]:
test_batches = [
os.path.join(data_path, "cifar-10-batches-py", "test_batch")
]
train_batches = [
os.path.join(data_path, "cifar-10-batches-py", "data_batch_1"),
os.path.join(data_path, "cifar-10-batches-py", "data_batch_2"),
os.path.join(data_path, "cifar-10-batches-py", "data_batch_3"),
os.path.join(data_path, "cifar-10-batches-py", "data_batch_4"),
os.path.join(data_path, "cifar-10-batches-py", "data_batch_5")
]

print("Extracting train images from pickle batches")
train_images = transform_images(train_batches)
print("Extracting test images from pickle batches")
test_images = transform_images(test_batches)

return test_images, train_images


def load(images: Tuple[List, List], dataset_name: Text) -> Tuple[List, List]:
test_images, train_images = images

temp_folder_path = get_temp_data_path()

dataset_folder = os.path.join(temp_folder_path, dataset_name)

dataset_train_folder = os.path.join(dataset_folder, "train")
dataset_test_folder = os.path.join(dataset_folder, "test")

if not os.path.exists(dataset_train_folder):
os.mkdir(dataset_train_folder)
if not os.path.exists(dataset_test_folder):
os.mkdir(dataset_test_folder)

print("Saving train images to {}".format(dataset_train_folder))
train_image_paths = save_images(train_images, dataset_train_folder)
print("Saving test images to {}".format(dataset_test_folder))
test_image_paths = save_images(test_images, dataset_test_folder)

return train_image_paths, test_image_paths


if __name__ == "__main__":
data_path = extract("CIFAR10")

images = transform(data_path)

res = load(images, "CIFAR10")

Create a dataset

To work with datasets in ClearML is used Dataset class.

An example script for creating a Datset:

from clearml import Dataset

from source.auxiliary_code import global_config

if __name__ == "__main__":
dataset_name = 'CIFAR10'

cifar10_dataset = Dataset.create(dataset_project=global_config.DATASET_PROJECT, dataset_name=dataset_name)

for dataset in Dataset.list_datasets(dataset_project=global_config.DATASET_PROJECT, only_completed=False):
print(dataset)

Load data into a dataset

You can load new data into an existing dataset.

In the example, File Server is used to store data. You can configure ClearML Server to work with any storage, for example, connect Selectel object storage.

Sample script for loading data into a dataset:

import os

from clearml import Dataset

from source.auxiliary_code import global_config

if __name__ == "__main__":
dataset_name = 'CIFAR10'

cifar10_dataset = Dataset.get(dataset_project=global_config.DATASET_PROJECT, dataset_name=dataset_name)

data_path = os.path.join(global_config.get_temp_data_path(), dataset_name)

cifar10_dataset.add_files(
path=os.path.join(data_path, 'train'),
dataset_path=os.path.join(dataset_name, 'train'),
verbose=True
)

Dataset.upload(cifar10_dataset, verbose=True)

Add metadata for a dataset

You can add metadata for a dataset. The example adds tags (Tags) — these can be used to filter datasets.

Sample script for adding tags:

from clearml import Dataset

from source.auxiliary_code import global_config

if __name__ == "__main__":
dataset_name = 'CIFAR10'

cifar10_dataset = Dataset.get(dataset_project=global_config.DATASET_PROJECT, dataset_name=dataset_name)

cifar10_dataset.add_tags(['image', 'classification', 'example', 'small'])

for dataset in Dataset.list_datasets(dataset_project=global_config.DATASET_PROJECT, only_completed=False):
print(dataset)