Skip to main content
General information about the Data Science Virtual Machine product
Last update:

General information about the Data Science Virtual Machine product

Data Science Virtual Machine (DSVM) is a cloud server with a ready-made operating system image and pre-installed tools for machine learning developers and data analysts.

With DSVM you can:

  • develop applications for chatbots, recommendation services, recognizing objects in photos and videos, speech synthesis and recognition, and prediction services;
  • to train the models;
  • perform experiments with data.


Tools are pre-installed in the image for DSVM (more details in their official documentation):


When using DSVM, only the computing resources of the cloud server are paid under cloud-platform-payment-model.

Before using DSVM top-up balance.

Prices for computing resources can be viewed at

Create DSVM

Use the Create cloud server instruction.


  • source is a ready-made image of Ubuntu 22.04 LTS Machine Learning 64-bit;
  • configuration — with RAM from 2 GB and boot disk capacity from 40 GB. For fast model training, we recommend using GPU Line configurations — they allow up to eight GPUs.

Launch JupyterLab

  1. Open the page http://<ip_address> in your browser.

    Specify <ip_address> — the public IP address of the cloud server, can be viewed in control panel under Cloud PlatformServers → server page → Ports tabPublic IP column.

  2. Enter the default password: